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A unitary coupled cluster method is advocated in this paper for the calculation 
of static properties. Corresponding to the perturbed Hamiltonian H (h) includ- 
ing the relevant static property, a suitable unitary wavefunction is envisaged. 
It is shown that a specific nonvariational model of calculating various order 
static properties utilising this unitary ansatz results in simplifications compared 
to the previous Coupled Cluster Theories using only hole-particle excitation 
parameters formulated for this purpose. 
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I. Introduction 

Recently there have been some interests in the development of theories for the 
calculation of static and dynamic electronic properties. Two of the major types 
of theories that have gained momentum in the calculation of such properties are 
the Coupled Cluster Methods (CCM) [1, 2] and the perturbative approach [3]. 
These methods have been initially formulated for the sake of electron correlation 
energies. Extensive applications have also been made in recent years to the 
calculation of correlation energies. Several reviews on the use of these theories 
to the subject of electron correlation energies have appeared in literature. Some 
reviews and significant papers have been cited in Refs. [4-11]. However, only 
recently attention has been turned to the adequate modification of such theories 
for the use in static and dynamic electronic property calculations. One of the 
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earlier methods using the Coupled Cluster (CC) ansatz is to calculate the expecta- 
tion value of the first order static property 0 of interest for a state function which 
is close to the exact function. Cizek [4] and Fink [12] investigated the expectation 
value expression in CC framework and showed it to be a sum of linked diagrams. 
Using a nonvariational mode of solution, a significant method was developed by 
Monkhorst  for the calculation of static and dynamic electronic properties with 
the help o f a  CC wavefunction. The wavefunction, however, is a suitable modifica- 
tion of the wavefunction used for correlation energy studies. The ansatz used by 
Monkhorst  for the static properties was described by 

~(A)  = eT(~)4~o (1) 

where ~bo is the single determinant reference state, T(A) is a suitable power series 
of ~, A being the coupling parameter of the system hamiltonian with the suitable 
external field (defining the property of interest). Using an ansatz similar to the 
one of  Monkhorst,  the present author recently suggested a variational method 
for the static property calculations [2]. Similarly, the perturbation framework has 
been given the proper  form by Sadlej and others in recent years for this purpose 
[3]. The system Hamiltonian was the zeroth order Hamiltonian and the coupling 
with the field serving as the perturbation with different order corrections giving 
different order static properties. 

However, in the formulation of static properties by CCM, only hole-particle 
cluster parameters have been so far used, while in the correlation energy studies 
a unitary ansatz has also been tried [5, 13-17]. In this paper we present a CCM 
for the calculation of  static electronic properties in which the ansatz ~() t )  is 
unitary in nature. A straightforward generalisation of the nonvariational method 
of Monkhorst  [1] using this ansatz is first made. Then it is shown that the use of  
a specific function (which is different from what a straightforward generalisation 
dictates) for projection onto the Schrodinger's equation for H( ; t )  to obtain E()t)  
leads to simplified expressions for static properties. In the next section we present 
a brief overview of the current nonvariational [1] and variational [2] CC 
approaches using only hole-particle excitation parameters as well as the perturba- 
tive approach by Sadlej [3] for the calculation of static properties. Sect. 3 presents 
the nonvariational method with the help of the unitary ansatz. Sect. 4 contains 
some relevant discussions. Sect. 5 contains summary of the present work. 

2. Overview of the pertinent theories 

Most of  the electronic properties are derivable as response of the system in the 
presence of external fields. For this purpose, a perturbed Hamiltonian H(A) is 
defined as, 

H(A) : H + ) t 0  (2) 

where H is the Hamiltonian of the system, 0 is the corresponding property 
operator, )t is a coupling parameter. In the approaches using the CC ansatz, the 
wavefunction ~ ( ~ )  corresponding to H() t )  is given in Eq. (1). 
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T(A)  is expanded in a power series of h as, 

T(A)  = T + A T ( l l + A 2 T ( 2 ) +  . . . . .  (3) 

where the operator T is the usual logarithm of the wave operator for the wave 
function corresponding to field-independent Hamiltonian H. T (1~, T (2~ etc. 
operators appear as the response of the wave function in the presence of the 
field. In the usual nonvariational approach followed by Monkhorst 

E(A) = ffbo I e-r(X~H(h) er(A~lqbo). (4) 

A suitable power series expansion of E (h) is  as follows 

E (h)  = E + h E ( ~ +  ,CE (2~ + . . . . .  (5) 

where, again E is the energy in the field-independent case. E (~), E (2~ etc. appear 
due to the occurrence of the term containing the appropriate property operator 

and are first, second etc. order static electronic properties. Equating various 
powers of h, different orders of property can be calculated. 

Specifically, 

E (~= (~o[ e - r { 0 + [ H ,  T(~)]} er[~o) (6a) 

with the equation determining parameters of T ~) given by 

(~'1 e -T{0+[H,  T(')]} er[~o) = 0 (6b) 

O*'s being the relevant excited states. T-parameters are substituted from the 
usual Cizek's equation for calculation of correlation energy in (6b) to calculate 
the parameters of T (~). T (l) parameters are sufficient for the calculation of first. 
order properties. T (~) can be expanded as, 

T(1) = ~ T~ ~ (7a) 
r t l  

with 

T~ I~= ~ (pltll]a)apa~ (7b) 
p ,  ct 

T(21~= Y~ (pq[t~[a/3)avaqat~% (7c) 
P,q 
a,fl 

and so on. Greek letters a,/3 etc. indicate hole/occupied orbitals where as p, q 
etc. indicate virtual orbitals. One can clearly see that in the similar equations for 
any order property e.g. E (i), parameters of T (~ are needed and not of higher order. 

It may be noted that in Monkhorst's nonvariational approach Schr6dinger's 
equation for the perturbed Hamiltonian H()t)  is projected on to (qb*] e - r ( ~  I for 
the equations determining the relevant T-parameters and is projected onto 
(tirol e-T(a)[ for the values of the properties. 

Recently, the present author suggested a variational method with the help of the 
ansatz given by the Eq. (1) [2]. A linked perturbed expectation value functional 
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E(A) is obtained 

E (A) = (qbo{ eT(A)+H(A) eT(X)[(I)0)Linked . (8) 

E(A) and T(A) have similar expansions as in Eqs. (5) and (3) respectively. A 
variational recipe may be followed for the calculation of the necessary different 
order properties. Equating powers of A in Eq. (8), one obtains various order 
properties. Specifically, the first order static property E (1) may be written as, 

E (') = (OdN[eT§ T(1)+H+ HT (')} eT]iO0)Linked (9) 

As for the solution of the necessary T(1)-parameters, it was observed that if we 
include the necessary operators T (i) up to the same rank of excitation, equations 
obtained by differentiating E (A) with respect to T or T (~ parameters and equating 
powers of ,~ for any i will be identical. Hence, the relevant equations may, for 
example, be obtained by equating up to necessary powers of )t in the following 
system of equations equal to zero. 

OE(A) 
=0. (10) 

O T + 

The perturbative approach followed by Sadlej starts again from the perturbed 
Hamiltonian as in Eq. (2) with the system Hamiltonian H providing the zeroth 
order Hamiltonian. A perturbative expansion of ~(X) is envisaged and k-th order 
property arises out of the k-th order correction term to the eigenvalue of the 
SchrSdinger's equation for the perturbed Hamiltonian. If Hartree-Fock approxi- 
mation is invoked for the zeroth order wavefunction, the values are approximate 
and can be corrected by the correlation perturbation series as envisaged recently 
by Sadlej [3]. 

3. Use of unitary ansatz for the calculation of static properties 

The idea of unitary ansatz has been conceived by several authors e.g. VanVleck 
[13], Primas [14], Yaris [15], Westhaus [16], da Providencia [17] and Kutzelnigg 
[5]. Kutzelnigg used the ansatz in a form suitable for the correlation energy 
studies [5]. Instead of cluster parameters corresponding to hole-particle excita- 
tions, Kutzelnigg used as logarithm of the wave operator the anti-hermitian cluster 
parameters o- and cast the CCM for the correlation energies using such a unitary 
ansatz. It is possible in a similar vein to introduce unitary ansatz to the problem 
of static properties. Use of such a unitary ansatz and a suitable set of functions 
for projection of the corresponding SchrSdinger's equation leads to simplifications 
for the static properties compared to the expressions derived in the Refs. 1 and 
2. We write the ansatz appropriate to the perturbed Hamiltonian H(A) as, 

~(A) = e~(~)Oo (11) 

with 

or(A) = 0-+ Acr(~) + A2~(2)+ . . . . .  (12) 
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very similar to Eq. (3). However, o-, or (l), o -(2) etc. are antihermitian such that 
e ~(a) is unitary (A assumed to be a real coupling parameter). Our ansatz given 
by Eq. ( 11 ) is a natural generalisation of  the unitary ansatz used for the correlation 
energy to the present problem of static properties. 

The Schr6dinger equation for H(A) may be written as, 

( H + A 0 )  e~(A)4)0 = E(A) e~(A)4) 0. (13) 

A straightforward generalization of the use of unitary ansatz would be to project 
Eq. (13) to (4)0] e-~(x)[ for the calculation of  static properties and to (4)'1 e-~(x)l 
for obtaining the necessary cluster parameters. This would be quite similar to 
the Monkhorst 's method except that the ansatz is unitary. In such a use of the 
unitary ansatz, the relevant equations would be as follows: 

(4)ol e-~(X)H(A) e~(~)14)o)= E(A) (14a) 

(4)'1 e-~(~)H(A) e~(~)14)o) = 0. (14b) 

We can get expressions similar to the ones in Ref. [1] for E (1), E (2) etc. However, 
it may be noted that in such a case E(A) as obtained by Eq. (14a) would be 
identical to the perturbed energy functional (~(A)IH(A)IW(A))/(~(A)I~(A)) 
using the ansatz (11). 

However, as stated earlier, if we use a different function for projection in Eq. 
(14a), we get an equation for E(A) which gives more simplified expressions for 
E (0, E (2) etc. Let us project Eq. (13) on to (4)o[ e-a[ (not (4)o[ e-~(~)[) to obtain, 

(4)ol e-'~H(A) e~(~)14)o) = E (A)(4)ol e -"  e~(~)14)o). (15) 

However, to derive equations for the cluster parameters o-, o -(~), (r (2) etc. the 
SchrSdinger's equation (13) is projected again to (4)*] e-~(x) I as in Eq. (14b) so 
that Eq. (14b) serves as an equation determining the cluster parameters. We will 
show later in this section the simplifications afforded by the use of  Eq. (15) 
instead of Eq. (14a). 

Using the er(A)]4)o) ansatz, Monkhorst showed that the nonvariational energy 
E(A) obtained by projecting onto (4)ol e-r(A)l is identical to the perturbed energy 
functional when all possible T,-clusters are taken into account such that for the 
exact state E (~) obtained by the nonvariational method (i.e. nonvariational method 
to calculate E(A)) is identical to (0) (a restatement of Hellmann-Feynmann 
theorem). In the case of the unitary ansatz the nonvariational method of obtaining 
E(A) through Eq. (14a) leads to results identical to the perturbed energy func- 
tional as noted earlier. However, even in the present method of projection 
envisaged here using unitary ansatz it can similarly be shown that when all o- 
clusters are included, E (h) defined from Eq. (15) (by the projection on to (4)ol e-~l 
as advocated here) is identical to the perturbed energy functional utilising unitary 
ansatz i.e. 

E'(A) = (4)0[ e-~(A)H(A) e~(A)[4)o) (16) 

(Norm of ~ ( h )  is unity in this case). 
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This can easily be seen because of the following identities, 

((I)o[ e- '~H(h)  e~(X)[(I)o)= ((I)o[ e ~ e'~(X)(e-'~(~)H(X) e~(~))](Po) 

: (q%[ e -~ e~(~)l~o)((~ol e-~(A)H(A) e~(~)l(po) 
-o, o-(x) ~ , 

e 

=( ol e (17) 

(because of the resolution of identity and Eq. (14b)). But in the case of approxima- 
tion function ~ ( h ) ,  E(A) defined through Eq. (15) would not be identical to 
E'(A). The relation, 

=~ =B(') (18) 

(E ~ calculated through Eq. (15) and Eq. (5)) does not strictly hold good in such 
approximate case. However, as pointed out by Monkhorst [1], in such cases E ~ 
is closer to the exact answer. In such cases also, we associate E (i) as the i-th 
order property. We will now derive the expressions for E (~), E (2) etc. through 
the use of Eq. (15) and show the simplifications obtained. We observe that e~CPo 
satisfies the Schr6dinger's equation for the field-independent system Hamiltonian, 

H e ~'r = E e~'Cbo (19a) 

such that 

E = (Cbo[ e - ~  e~lOo). (19b) 

Eq. (19b) corresponds to h-independent terms of Eq. (15). The equation corre- 
sponding to the terms linear in h is given by, 

< ol e-~no.(1)e~l(I)o)+(egol e- 6 e~](Po) 

= E((I)o] e-~o. (1) e~[~o) + E(')((I)o] e -~ e~[(Po). (20) 

With the use of Eq. (19a) one obtains 

E (1)= (d/)o[ e-~6 e~l(Po) (21) 

for the expression of the first order static property. The nonvariational method 
of Monkhorst [1] or the variational method of the present author [2] needs the 
knowledge of T (~) parameters for the calculation of E ~ as can be seen in Eqs. 
(6a) and (9) respectively. But here E (~ turns out as the expectation value of the 
property operator 0 with respect to the original system wavefunction alone. 
However, the ansatz unlike the ones used in Refs. 1 and 2 is unitary. Similarly, 
the expression for any second order property E (2) may also be derived. We will 
observe that the expression for E (2) does not need the knowledge of o .(2) but only 
up to o.o). This advantage is obtained if the framework of unitary ansatz is used 
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and Eq. (15) is used instead of Eq. (14a). Writing in detail the equation corre- 
sponding to quadratic terms in A, we obtain 

(~o1 e-~Ho'(2) eq~o>+<~o[ eigHt r0)2 eqa'o>+<r e-~6o "(') e~[(I:'o) 

= E((I)o I e -r eq*o)+ E(~ol e - r  e'~]qbo) 
+ E( ' (~o[  e -r e%r(')[qbo) + E(2)(@o] e -r er (22) 

whence it follows that 

E (2)= (qbol e r -(') e~[~o) (23) 

(with the use of (~o[O-~ = 0 and Eq. [19a]). 

Thus a lower order o- would specify a higher order static property. The expression 
for E ~ has a proper multi-commutator structure. However, for higher order 
static properties calculated by Eq. (15) as advocated here such elegant structure 
(as in Monkhorst 's method [1]) may not be present. 

Taking cue from Kutzelnigg's work [5], o -") may be written as, 

o "(~ T ( ~  T (~)+ (24a) 

o" = T -  T + (24b) 

T, T ~ T (2) etc. have usual meaning of hole-particle excitation parameters (as 
used in works cited in Refs. [1] and [2]). 

4. Discussions 

The nonvariational E(A) as defined through Eq. (15) may also be seen to be 
identical to a bivariational expression for perturbed Hamiltonian H(A) defined 
by 

(~] (H(A)  - E (A))I~(A)) = 0 (25) 

with ~(A)  as defined in Eq. (11) and ~ as er which is a unitary ansatz for 
the system Hamiltonian H alone. Bivariational expressions suitable for correlation 
energy studies were used by Jankowski et al. [18]. 

The structure of the expressions for E (o are quite similar to a perturbative structure 
where a lower order correction to the wavefunction specifies the higher order 
corrections to the energy. Let us start from H as the zeroth order Hamiltonian 
with 6 as the perturbation term, A being the perturbation parameter. However, 
we consider as the zeroth order wavefunction not the Hartree-Fock wavefunction 
but a CC wave function for the system. Again if we consider a unitary ansatz 
for the system Hamiltonian [5, 13-17], the zeroth order wavefunction in this 
model perturbative problem is given by, 

q% = e ' ~ o  (26) 
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qbo being the Hartree-Fock function such that E (1), the first order correction, is 
given by Eq. (21) in the perturbation framework. There is a similarity with 
perturbative structure for perturbation corrections are obtained by projection of 
the Schr6dinger equation on to the Zeroth order CC wavefunction and equating 
powers of A. With unitary CC ansatz e~d~o as the zeroth order wavefunction, Eq. 
(15) is precisely an equivalent approach. Indeed, if we view ansatz (11) as a 
perturbation expansion in A for the model perturbation problem outlined above 
and associate o -(~) e~dPo as the first order correction to the wavefunction, E (2) 

obtained by the unitary CC method as in Eq. (23) is precisely the perturbative 
equivalent. However, we are emphasising a structural similarity only. 

5. Summary 

If we use a unitary CC ansatz for the calculation of static properties and project 
SchrSdingers equation for the appropriate perturbed Hamiltonian H(A) onto 
(~o[ e-~l (where e ~ o  is the wavefunction corresponding to the system Hamil- 
tonian H only) we obtain expressions for static properties for which the knowledge 
of lower order cluster parameters is sufficient. The expression for E(A) in such 
a method is akin to a bivariational expression. 
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